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Abstract 

LiDAR is an emerging technology that can provide detailed point-cloud measurements for 

accurate detection and characterization of objects.  The cost of this technology has seen 

significant reduction in recent years with the scaling of production to meet the demands of 

wide-ranging applications such as autonomous vehicles, infrastructure inventory and 

topographic mapping, to name a few. Within the field of infrastructure-based traffic 

monitoring, recent studies have investigated the use of this sensor for advanced truck 

classification applications in side-fire orientation, as well as for motorized vehicle, bicycle and 

pedestrian detection at traffic intersections.  This study explored the potential of LiDAR in 

traffic monitoring applications. These include the investigation in the feasibility of edge-side 

data processing of real-time LiDAR data, real-time detection of vehicle objects using a state-of-

the-art object detection algorithm and the use of LiDAR to estimate microscopic vehicle 

trajectories within its field of view. 
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Executive Summary 

LiDAR is an emerging technology that can provide detailed point-cloud measurements for 

accurate detection and characterization of objects.  The cost of this technology has seen 

significant reduction in recent years with the scaling of production to meet the demands of 

wide-ranging applications such as autonomous vehicles, infrastructure inventory and 

topographic mapping, to name a few. Within the field of infrastructure-based traffic 

monitoring, recent studies have investigated the use of this sensor for advanced truck 

classification applications in side-fire orientation (by the ITS-Irvine research team1), as well as 

for motorized vehicle, bicycle and pedestrian detection at traffic intersections.  Because of the 

ability to obtain detailed three-dimensional reconstruction of vehicles from the preceding 

research by ITS-Irvine, traffic surveillance models developed for this sensor technology possess 

some inherent advantages over existing technologies such as inductive loops and microwave 

radar in traffic stream measurements, as well as vehicle count and classification accuracies for 

traffic monitoring and census applications. This potentially applies to both permanent freeway 

locations and temporary work zone locations. In particular, our research to date2 suggests that 

LiDAR has the potential to be a cost-effective substitute for inductive loop sensors at 

permanent and temporary traffic surveillance and monitoring sites where overhead mounting 

infrastructure is available.   

Four sites were selected for LiDAR point cloud data collection for this study as shown in Figure 

ES-1.  These sites are part of the University of California, Irvine Institute of Transportation 

Studies (UCI-ITS) Freight Mobility Living Laboratory (FML2) deployment of advanced detector 

sites and were strategically located to monitor a diverse population of trucks and their activity. 

The I-15 Mountain Pass and I-10 Blythe study sites are located near the state borders with 

Nevada and Arizona, respectively, to capture interstate truck movements. The I-710 Willow 

study site is located near the Ports of Los Angeles and Long Beach, and is ideal for monitoring 

drayage truck activity.  The SR-7 study site serves the Calexico truck border crossing, and is 

located just south of the intersection with the SR-98 highway.  These four sites are also part of 

the UCI ITS network of Truck Activity Monitoring System (TAMS) sites throughout the State of 

California, which provides truck data in detailed body and axle classification data using existing 

inductive loops sensor infrastructure.  

Installation of field sensors at each site was performed in coordination with Caltrans District 

field staff.  The LiDAR sensors were installed on an existing gantry or poles that were secured to 

traffic cabinets with the assistance of Caltrans field staff for this study. Each study site is 

equipped with a combination of a LiDAR sensor, an Automatic License Plate Recognition (ALPR) 

                                                      
1 Li Y., K.R. Allu, Z. Sun, A. Tok, S.G. Ritchie, 2021. An Ensemble Approach to Truck Body Type Classification 

using Deep Representation Learning on 3D Point Sets. Proceedings of the 100th Annual Meeting of the 

Transportation Research Board, Washington D.C. 
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Camera, advanced signature-capable inductive loop detectors, and a solid-state field processing 

unit. 

 

Figure ES-1 Location of Study Sites 

This study involved three main tasks (organized in Chapters 3 thru 5) in exploring the use of 

LiDAR sensors for obtaining traffic performance measures.  The first task investigated the 

feasibility of edge-side point cloud data processing from real-time LiDAR data using a platform 

known as the Robotic Operating System (ROS).  This involved exploring several essential steps 

needed to prepare an operational field system to perform LiDAR-based traffic data collection. 

The main components of this system are a sensor driver used to establish communication 

between the LiDAR sensor and field unit, a data parser to interpret the raw sensor data stream 

into the desired measurement data to provide near real-time LiDAR data processing at the 

edge-side. 

The second task involved the evaluation of traditional image-based processing methods used to 

perform vehicle detection and the investigation of deep learning-based LiDAR object detection 

methods to address data processing challenges associated with the real-time detection of 

vehicle objects.  The investigation involved the implementation of PointPillar (Figure ES-2) – a 

state-of-the-art pre-trained object detection algorithm originally developed for autonomous 

driving applications – for traffic monitoring applications. 
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Figure ES-3 PointPillar Detection Results 

The final task explored the use of LiDAR data to estimate the microscopic trajectories within its 

field of view (FOV).  Microscopic trajectories can be used to study various traffic flow 

phenomena such as car-following behavior, lane changing behavior, capacity drop and traffic 

oscillation propagation. LiDAR technology has significant potential in these applications due to 

its ability to directly measure physical attributes of vehicle objects. However, a fixed reference 

point such as the centroid of a vehicle – which is essential for trajectory estimation across 

captured frames – cannot be reliably obtained if only an incomplete part of a vehicle is 

captured in each frame.  This is especially prevalent near the FOV extremes, where vehicles are 

entering and exiting its view, or when vehicles are occluded by other vehicles in adjacent lanes. 

The first step in this task involved a comprehensive literature review of trajectory estimation 

techniques followed by the development of a methodological framework to process raw LiDAR 

data and combine the individual frames of LiDAR scans of a vehicle through a process known as 

registration.  An investigation of available registration algorithms was performed to determine 

the optimal registration pipeline.  Finally, the estimated microscopic trajectory (example shown 

in Figure ES-3) was obtained by performing sequential inverse rigid body transformations of the 

reconstructed vehicle body. 
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Figure ES-3 An Example of Microscopic Trajectory presented at 1 second aggregation from 
reconstructed LiDAR scans 

  

a. Side View 

b. Top View 
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Chapter 1 Introduction 
LiDAR is an emerging technology that can provide detailed point-cloud measurements for 

accurate detection and characterization of objects.  The cost of this technology has seen 

significant reduction in recent years with the scaling of production to meet the demands of 

wide-ranging applications such as autonomous vehicles, infrastructure inventory and 

topographic mapping, to name a few. Within the field of infrastructure-based traffic 

monitoring, recent studies have investigated the use of this sensor for advanced truck 

classification applications in side-fire orientation (by the ITS-Irvine research team2), as well as 

for motorized vehicle, bicycle and pedestrian detection at traffic intersections.  Because of the 

ability to obtain detailed three-dimensional reconstruction of vehicles from the preceding 

research by ITS-Irvine (as shown in Figure 1-1), traffic surveillance models developed for this 

sensor technology have some inherent advantages over existing technologies such as inductive 

loops and microwave radar in traffic stream measurements, as well as vehicle count and 

classification accuracies for traffic monitoring and census applications. This potentially applies 

to both permanent freeway locations and temporary work zone locations. In particular, our 

research to date2 suggests that LiDAR has the potential to be a cost-effective substitute for 

inductive loop sensors at permanent and temporary traffic surveillance and monitoring sites 

with available overhead mounting infrastructure. 

This study sought to investigate the potential use of LiDAR technology in obtaining traffic 

performance measures.  A recurring concern of LiDAR is in its significant computational 

requirements due to the large data throughput from the sensor.  Hence, edge side computing 

was investigated to determine the feasibility for traffic operations applications.  This 

investigation explored real-time data processing platforms such as the Robotic Operating 

System (ROS) and deep-learning-based object detection methods.  An investigation was also 

made to develop a model to obtain microscopic trajectory estimation from individual raw LiDAR 

frames.  Data was obtained from LiDAR sensors installed at several Freight Mobility Living 

Laboratory (FML2) testbed locations along existing freeway corridors in Southern California. 

                                                      
2 Li Y., K.R. Allu, Z. Sun, A. Tok, S.G. Ritchie, 2021. An Ensemble Approach to Truck Body Type Classification 

using Deep Representation Learning on 3D Point Sets. Proceedings of the 100th Annual Meeting of the 

Transportation Research Board, Washington D.C. 
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Figure 1-1 Detailed three-dimensional reconstruction of a truck from LiDAR point cloud data 
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Chapter 2 Field Equipment Setup and Data Collection 

2.1 Overview 
Four study sites were selected for LiDAR point cloud data collection.  These sites were 

strategically located to monitor a diverse population of trucks and their activity, as shown in 

Figure 2-1. The I-15 Mountain Pass and I-10 Blythe study sites are located near the state borders 

with Nevada and Arizona, respectively, to capture interstate truck movements. The I-710 Willow 

study site is located near the Ports of Los Angeles and Long Beach, and is ideal for monitoring 

drayage truck activity.  The SR-7 study site is located just south of the intersection with SR-98 

highway, and serves the Calexico truck border crossing.  The inductive loop sensors at all four 

sites are connected to advanced signature-capable detector cards as part of the UCI ITS network 

of Truck Activity Monitoring System (TAMS) sites, which provides truck data in detailed body and 

axle configurations  using existing inductive loop sensors. 

 

 

Figure 2-1 Location of Study Sites  

Installation of field sensors at each site was performed in coordination with Caltrans District 

field staff.  The LiDAR sensors were installed on an existing gantry or poles that  were secured 

to traffic cabinets with the assistance of Caltrans field staff for this study. Each detection site is 
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equipped with a combination of a LiDAR sensor, an Automatic License Plate Recognition (ALPR) 

Camera, advanced signature-capable inductive loop detectors, and a solid-state field processing 

unit. Figure 2-2 shows an example of advanced sensors installed at the I-10 Blythe study site. 

 

 

Figure 2-2 Example of Sensor Installation at Blythe Study Site 

 

2.2 Description of Study Sites and Equipment Setup 

2.2.1 I-15 Mountain Pass Prepass WIM Site 
The I-15 Mountain Pass site (shown in Figure 2-3) is located along the single-lane truck bypass 

between the state agricultural inspection facility and the commercial vehicle enforcement facility 

at an existing PrePass Weigh-In-Motion (WIM) site, which monitors all truck activity traveling 

southbound from Nevada entering into California.  A VLP-16 LiDAR sensor was secured to the 

vertical mast of the existing PrePass gantry and powered from the traffic cabinet via a Power-

Over-Ethernet (POE) connection.  Additional hardware at this study site include WIM sensors, an 

inductive loop sensor connected to signature-capable inductive loop detector card and an 

Automatic License Plate Recognition (ALPR) Camera.  The on-site field processing unit was 

located in the traffic cabinet and archived data from the traffic sensors. 



Investigation of LiDAR Sensing Technology to Improve Freeway Traffic Monitoring 
 

18 
 

 

 

Figure 2-3 I-15 Mountain Pass Study Site Setup 

2.2.2 I-10 Blythe Traffic Census Site 
The I-10 Blythe study location (shown in Figure 2-2) is an existing Caltrans Traffic Census site 

which monitors all mainline interstate traffic with two lanes in each direction.  A VLP-32C LiDAR 

sensor was installed on a pole secured to the traffic cabinet next to the westbound lanes entering 

California.  

This study site is also equipped with an ALPR unit as well as a video camera for the validation of 

vehicle records.   

2.2.3 SR-7 Calexico Traffic Census Site 
The SR-7 Calexico study location is an existing Caltrans Traffic Census site equipped with piezo 

and inductive loop sensors located about a quarter mile north of the United States – Mexico truck 

border crossing at Calexico.  The SR-7 highway at this location comprises two mainline lanes in 

each direction (shown in Figure 2-4). The traffic cabinet location adjacent to the northbound 

lanes allows the LiDAR sensor to monitor truck movements from Mexico entering through the 

border crossing into California.  
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Figure 2-4 Equipment Setup at SR-7 Calexico 

 

2.2.4 I-710 Willow Traffic Monitoring Site 
The study site along the I-710 Interstate freeway (shown in Figure 2-5) was set up to monitor 

drayage truck activity from the Ports of Los Angeles and Long Beach.  The I-710 freeway at this 

location comprises three mainline lanes in both the northbound and southbound directions. 
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Figure 2-5 Equipment Setup at I-710 Willow 

 

2.3 Data Collection 
LiDAR point cloud data was collected continuously over the time periods shown in Table 2-1 to 

test its ability for long-term traffic data collection. 

Table 2-1 Data Collection period for Four Detection Sites 

Detection Site Data Collection Period 

I-10 @ Blythe May 5 2022 – Jul 2 2022 
I-710 n/o Willow St Mar 6 2022 – Jun 11 2022 
I-15 @ Mountain Pass Mar 1 2022 – Apr 20 2022 
SR-7 s/o SR-98 Mar 1 2022 – Apr 16 2022 
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Chapter 3 Investigation of Edge-side LiDAR Data 
Processing using Robotic Operation System (ROS) 

Several essential steps are needed to prepare a field computing unit equipped with LiDAR for 

traffic data collection. First, a sensor driver is used to establish communication between the 

LiDAR sensor and field unit. Second, a data parser is required to interpret the raw sensor data 

stream into the desired measurement data. Thus, an integrated platform is required to facilitate 

efficient LiDAR data collection and processing. In this chapter, we investigated the use of the 

open-source platform – Robotic Operation System (ROS)3 – to provide near real-time LiDAR data 

processing at the edge-side. This chapter is organized as follows. First, a brief introduction to ROS 

is presented. Second, we describe our data collection setup and the collected datasets. Finally, 

we show a real-time data visualization result using ROS to present the feasibility of the use of 

ROS to process sensor data and deploy models. 

3.1 Introduction to ROS 
Robotic Operation System (ROS) is an open-source software development kit that comprises a 

set of libraries and tools that was initially designed for the use of robotics applications. ROS 

provides sensor drivers and an array of state-of-the-art data processing algorithms to facilitate 

tasks ranging from data streaming to modeling and implementation of robotic projects. This 

platform has also been adopted in the development of the autonomous driving platform. 

ROS can be considered as a meta-operation system containing tool and libraries in addition to 

built-in Operation System functions, such as hardware abstractions, package management and a 

developer toolchain 4 . ROS comprises three levels of concepts: the Filesystem level, the 

Computation Graph level, and the Community level.  

Resources are organized on the hard disk ROS filesystem level. The building blocks of the 

filesystem are described in Table 3-1. 

Table 3-1 Concepts of Filesystem Level Components 

 Descriptions 

Packages 
- Basic unit in ROS 
- Contains runtime process (nodes), libraries, configuration files, etc. 

Package Manifest 
- A file inside a package 
- Contains information about the package such as author, dependencies, etc. 

Meta Packages - A group of packages used for a special purpose. 

Meta Packages 
Manifest 

- Like the package manifest 
- Include packages inside as runtime dependencies and declare a runtime tag. 
-  A client calls the service by sending the request message and awaiting a reply. 

Messages 
- A type of Information that is sent among ROS processes 
- A custom message can be defined. 

                                                      
3 ROS: https://www.ros.org/ 
4 Understanding the ROS filesystem level: https://subscription.packtpub.com/book/hardware-&-

creative/9781788478953/1/ch01lvl1sec13/understanding-the-ros-filesystem-level 
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Services - A kind of request/reply to interaction between processes. 

 

The Computation Graph level is the most essential concept needed to understand the overall 

system. It is a peer-to-peer network of ROS processes that process data together. As shown in 

Figure 3-1, the basic ROS Computational Graph is comprised of Nodes, Masters, Parameter 

Servers, Messages, Services, Topics, and Bags. A summary of ROS Computation Graph 

components is presented in Table 3-2. 

 

 

Figure 3-1 Computation Graph Level of ROS 

Table 3-2 Concepts of ROS Computation Graph Components (1) 

 Descriptions 

Nodes - Nodes are processes that perform computation 
- Each node performs a specific task 

Master - The ROS Master is a server that provides name registration and lookup to the rest 
of the computation graph 

- Nodes rely on the Master to find each other, exchange messages or invoke 
services 

Parameter Server - Parameter server allows data to be stored by key in a central location 
Messages - Nodes communicate with each other via messages 

- A message is a data structure comprising typed fields 
Topics - Messages travel through a transport system via publish/subscribe semantics. A 

node sends out messages via publishing it to a given topic. 
- Topics are names used to identify the content of messages 

Services - Request/reply in the publish/subscribe communication paradigm is accomplished 
by a Service, which is defined by a pair of messages: one for the request and one 
for the reply. 

-  A client calls the service by sending the request message and awaiting a reply. 
Bag - ROS bags are a format for saving and playing back ROS message data. 
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The Community level concepts are used for different communities to exchange knowledge. It 

contains Distributions (similar to Linux distributions), Code Repositories, ROS Wiki, etc. 

 

3.2 Real-Time Data Streaming and Visualization with ROS 
The first task was to demonstrate real-time data streaming and visualization using ROS. Figure 

3-2 demonstrates how the raw LiDAR packets from VLP-32c was processed and displayed through 

ROS. 

 

Figure 3-2 ROS LiDAR Data Visualization 

Here, a point cloud conversion package designed for Velodyne Sensors was used to convert raw 

LiDAR packets received from VLP-32c to points stored in a format of Cartesian coordinate with 

additional information including “intensity” and “ring” values. Within this package, the 

“CloudNodelet” nodelet subscribed “/velodyne_packets” topic which contains the raw Velodyne 

data packets and published them to “/velodyne_points” topic, which holds the accumulated 

Velodyne point cloud transformed from the original reference frame. After that, we started the 

ROS graphical interface Rviz and subscribed to “velodyne_points” topic to display the 3D point 

cloud in the visualizer. The entire process is performed within the edge computing unit.  The real-

time point cloud visualization is displayed in Figure 3-3. 
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Figure 3-3 Real-time Point Cloud Visualization 

The top left corner in Figure 3-3 shows the camera view of the I-10 Blythe detection site, and the 

top right corner presents the live classification results from the inductive loop detector. 

Correspondingly, the RViz interface visualizes the real-time LiDAR data stream through the ROS 

platform. 
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Chapter 4 Investigation of Deep Learning-based LiDAR 
Object Detection Methods for Roadside Applications 

4.1 Introduction to Vehicle Detection 
Vehicle object detection is an essential task within LiDAR-based traffic data acquisition 

frameworks. LiDAR-based object detection methods that have been found in literature can be 

summarized into two categories: traditional image processing methods and learning-based 

methods. This chapter first presents the literature on both methods and then discusses the object 

detection issues observed using the traditional methods from the collected dataset. Next, the 

chapter explores the existing learning-based object detection models which have been previously 

used for autonomous vehicle perception and investigates the use of pre-trained models for 

roadside applications. Finally, this chapter discusses the potential improvement methods for 

roadside LiDAR-based truck detection models and proposes future research directions. 

4.1.1 Traditional Image Processing Methods for Vehicle Detection 
The traditional method to extract vehicle objects from the background environment is to first 

filter out background points according to their physical characteristics and then group the 

foreground vehicle objects using clustering methods. This type of method assumes that the 

background is static and then pre-selects multiple frames without any foreground objects as 

background frames (2–4). Subsequently, the target frames which contain vehicle objects will be 

compared with the background frame. The target point is identified as a point belonging to an 

object if the distance between the target point and background points is larger than a certain 

threshold. Finally, a density-based clustering method – Density-based Spatial Clustering of 

Applications with Noise (DBSCAN) – is adopted to group foreground points as vehicle objects and 

distinguish dissimilar objects. Similarly, we also considered using the maximum laser range 

distance values to eliminate static background points and subsequently used the Euclidean 

Cluster Extraction Algorithm to detect moving vehicles (5). In addition, to compare the raw point, 

Wu et al. developed a background subtraction method by segmenting the 3D space into cubes 

and filtering out the background cubes based on the cumulative cube density across multiple 

frames and then using the DBSCAN method to detect vehicle objects (6, 7).  This method reduced 

the computation time effectively and is able to filter out some moving background objects. Later, 

researchers also made efforts on enhancing the background subtraction processing by 

introducing and extracting additional sensor information such as Azimuth-Height (8) and 

intensity (9) values to support a better object detection result. 

The aforementioned methods were performed on limited datasets collected over a short time 

period within a day. However, we observed significant background shift issues in the proximity 

of sunrise and sunset. We suspect that the shifts may be caused by the temperature changes that 

may alter the alignment of the LiDAR sensors through distortion of the mounting pole.  This 

results in a background that may deviate from its static reference points. Since the previous 

methods rely on using multiple background frames as inputs, that method could fail due to the 
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temperature-affected transient changes of the background frames. In addition, the traditional 

unsupervised object detection methods utilized the spatial relationships between points to group 

points as vehicle objects. However, the shape of the vehicle objects was not well-considered. 

Thus, the detection results could be affected by the density distribution of the vehicle objects, 

especially for tractor-trailer trucks, since those algorithms recognized the object clusters based 

on the distance between each point within the object.  

4.1.2 Deep Learning-based Methods  
The development of autonomous driving in recent years has facilitated the rapid growth of deep 

learning-based 3D object detection models, with significant improvements in robustness, 

reliability, and computationally efficiency. Like the task of 2D image object detection models (e.g.  

R-FCN (10), R-CNN (11), Faster R-CNN (12), SSD (13), YOLO (14)), 3D detection models can be 

categized into two major types: One-stage and Two-stage models. One-stage detectors perform 

object classification and bounding-box regression directly without generating region proposals. 

On the other hand, two-stage models comprise two parts: a proposal generator followed by a 

detection generator. This type of detector will first generate region proposals and subsequently 

perform object classification for each proposed region. Two-stage models generally have better 

accuracy compared to one-stage models. However, they are more computationally intensive 

than one-stage models. Both types of models have been used in perception tasks of autonomous 

driving. Li et al. made the first attempt to apply a one-stage fully convolutional network detection 

method on the 2D point map which is projected and discretized from a 3D point cloud obtained 

from a LiDAR sensor (15). However, the 3D information from the sensor was not fully utilized. To 

further enhance the detection accuracy, researchers developed a 3D CNN model to extract 

features from the voxel representation of the point cloud (16). However, the efficiency of the 

voxel representation is relatively low compared to 2D models. To balance the detection accuracy 

and the computation efficiency, Yang et al. designed a single-stage PIXOR (Oriented 3D object 

detection from PIXel-wise neural network predictions) detector (17). They represent the 3D 

scene from the bird’s eye view (BEV) to reduce computation and use the height as channels along 

the third dimension to preserve the 3D information. Furthermore, Lang et al. designed a novel 

fast encoder for the task of 3D object detection named PointPillar (18). PointPillar utilized the 

PointNets (19) to learn the representation of point clouds based on their vertical columns which 

are called pillars in their study. Subsequently, the extracted features will be scattered and 

projected back to a 2D pseudo-image as an input for a 2D CNN backbone. Finally, the SSD detector 

has been adopted as the detection head and produces prediction results. Several two-stage 

models such as DepthCN (20), MV3D (21), and PointRCNN (22) have been designed for 

autonomous vehicle perception tasks. However, their computation efficiency is presented as 

their main concern. In addition to the object detection model development, several autonomous 

vehicle datasets deserve mention, such as Waymo (23), Lyft (24), KITTI (25), and nuScenes (26) 

dataset. These datasets provide a large amount of labelled 3D objects collected through 

autonomous vehicles from the on-road scene. The LiDAR sensors are placed horizontally on the 

top of the vehicle to perceive the ambient environment. These datasets have been considered 
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as benchmark datasets that are used to develop and compare 3D object detection models across 

academia and industry. 

In this study, we explored the use of a pre-trained state-of-the-art object detection – PointPillar 

- for the task of roadside truck monitoring and performed qualitative analysis on our roadside 

LiDAR dataset. 

 

4.2 Implementation of Pre-trained Object Detection Algorithms  

4.2.1 Ground Plane Regression and Sensor Orientation Adjustment 
To reduce the occurrence of occlusion issues and capture the inner-lane traffic, the LiDAR was 

mounted around 2.5 meters above the ground. However, lasers are unevenly distributed on the 

LiDAR rotating platform. The lasers are densely distributed in the area with smaller elevation 

angles (Figure 4-1 and Figure 4-2) and sparsely distributed with larger evaluations. When the 

sensor was placed horizontally and parallel to the ground plane, the point cloud obtained from 

the sensor will be too sparse to extract useful traffic information. Therefore, we slightly tilted the 

LiDAR to allow the center line of the sensor to point toward the region of interest (Figure 4-3). 

 

 

Figure 4-1 Illustration of Elevation Angles 
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Figure 4-2 Laser Channel Angles Distribution 

However, PointPillar converts raw point cloud to a stacked pillar tensor and pillar index tensor, 

which assumes the center line of the LiDAR is parallel to the ground plane. Thus, for our 

roadside vehicle detection task, we need to transform the sensor coordinate to align with the 

ground plane. First, the ground plane within the region of interest was estimated through the 

Random sample consensus (RANSAC) algorithm (27). The plane equation in the cartesian 

coordinate is shown in Equation 1. 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 (1) 

 

Figure 4-3 LiDAR Sensor Orientation 

Subsequently, the yaw, roll, and pitch values of the LiDAR sensor are calculated through the 

transformation matrix between the ground plane equation and the original LiDAR sensor 

coordinate. Finally, the sensor orientation is adjusted according to the yaw, roll, and pitch values. 

The sensor adjustment result is present in Figure 4-4. 
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Figure 4-4 Sensor Orientation Adjustment 

4.2.2 Qualitative Analysis of the Deep Learning Object Detection Model 
In this study, the PointPillar model that had been pre-trained on the nuScenes dataset was tested 

for roadside passenger vehicle and truck detection. As shown in Figure 4-5 Scene A, the detection 

model was capable of successfully capturing the passenger vehicles that are located close to the 

sensor. However, false negative events occurred when the vehicles were positioned further away 

from the LiDAR (Scene B). The bounding box regression results seem inaccurate for the single-

unit trucks (Scene D) since this type of truck is under-represented in the nuScene dataset. 

Similarly, tractor-trailer trucks and straight trucks with a trailer were commonly identified as two 

separate vehicles due to the dissimilar population between the training and testing set. 

Therefore, this preliminary analysis concluded that the pre-trained PointPillar needs to be fine-

tuned to better adapt to the task of truck detection and classification in the future. 
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Figure 4-5 PointPillar Detection Results 
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Chapter 5 Microscopic Trajectory Estimation using LiDAR 

5.1 Introduction 
The microscopic trajectory of a vehicle consists of information about its position at discrete 

timesteps over a defined time interval. Given such trajectory, vehicle’s instantaneous speed, 

acceleration, deceleration, and other traffic state parameters can be derived(28). Such 

microscopic characteristics are necessary for better traffic operations. Microscopic trajectories 

are used to study and understand various traffic flow phenomena like car-following behavior, 

lane changing behavior, capacity drop, traffic oscillation propagation, calibrating and validating 

car-following models, and traffic simulation models close to real world(29–31). These 

trajectories are also very important to be able to assess traffic safety by means of conforming 

to the speed limits and maintaining reasonable headways as well as lane positions. Surrogate 

safety measures (SSM) are widely used important metrics to assess traffic safety and use 

vehicle trajectories and interaction between vehicles to estimate SSM metrics(32, 33). They are 

also very important input for microscopic emission models such as Comprehensive Model 

Emissions Model (CMEM) and Motor Vehicle Emissions Simulator (MOVES) as they consider 

comprehensive modeling framework for driving behavior(34, 35). In this chapter we focus on 

estimating the microscopic trajectories of each vehicle using Light Detection and Ranging 

(LiDAR), an active remote sensing technique. 

LiDAR emits near infrared light and collects information about the geometry and reflectivity of 

the target environment. For the current study, a 32 beam LiDAR sensor rotating 180 degrees in 

the horizontal field of view is used. The raw point clouds obtained from the Lidar are processed 

to remove background using DBSCAN, and statistical outliers as proposed in (36). Each scan of 

the side-fire Lidar sensor captures all the truck bodies present in its Detection Zone (LDZ) 

partially. The scan will have rich information of the front portion of the truck when it is entering 

the LDZ, the side of the truck when it is in the midsection part of the LDZ and the rear portion of 

the vehicle when it is leaving the LDZ as shown in Figure 5-1 below. 
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Figure 5-1 Point Clouds representing individual scans of vehicles at various sections of LiDAR 
Detection Zone (LDZ) 

 

Trajectories of the vehicles passing through the LDZ can be estimated using data association 

and tracking of the same reference point on the corresponding raw scans of a vehicle. This 

reference can be a corner point of a minimum bounding box or the centroid of the bounding 

box either in 2D or 3D. Such an attempt has been made using the centroid of a 2D bounding 

box of individual scans for the purpose of truck body reconstruction in (37). One drawback of 

this approach to be used for trajectory estimation is the inherent shift in the centroid of the 

bounding box in successive scans ascribed to the varying size of the vehicle’s point cloud as it 

passes through the LDZ.  

When the vehicle is passing through the entry zone of the LDZ, size (length) of the point cloud 

grows in each successive scan as it progressively captures more and more rear part of the 

vehicle until it reaches the mid zone of the LDZ. Due to this, the estimated centroid in each 

successive scan is closer to the previous centroid than it should be. Similarly, as the vehicle 

leaves the LDZ from midsection, each successive scan progressively loses the front portion of 

the vehicle. This also results in the centroids in the exit zone being closer than they should have 

been. Speed estimated from such trajectories would be an underestimation in the entry and 

exit zones of the LDZ. This necessitates an alternative approach which can overcome the error 

due to the partial nature of the raw point clouds. To overcome the above stated drawbacks, we 

proposed a forward – backward pass rigid body transformation-based approach for estimating 

accurate microscopic trajectories. During the forward pass, the entire scanned body of the 

vehicle is reconstructed using pairwise registration. The centroid of the minimum bounding box 
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for such a reconstructed vehicle is very close to the actual centroid of the vehicle. This fully 

reconstructed vehicle is projected backward to each individual scan using inverse 

transformation during the backward pass. The trajectory of the vehicle is estimated using the 

centroid of the bounding box for these fully reconstructed vehicles. Such high temporal 

resolution trajectories have immense potential for further use in accurate emission estimates, 

traffic state estimates and traffic safety applications. 

5.2 Literature Review of Related Work 

5.2.1 Trajectory Estimation 
Microscopic vehicle trajectories are critical data for understanding car-following behavior, lane 

changing behavior and gap acceptance, which are core inputs for developing and advancing 

traffic flow theory, which in turn have impact on planning and operations of transport facilities. 

Understanding this Federal Highway(38). With the advances in communication and information 

technologies these trajectories are obtained by a variety of sensing technologies such as video-

based image processing(29–31), global positioning systems (GPS), location-based services such 

as cellular networks, wireless fidelity (WiFi), Bluetooth based probes, license plates(39), and 

probe vehicles(40).  

Except video-based image techniques, all other methods provide spatially sparse trajectories 

known as macro trajectories. There are methods proposed to derive microtrajectories from 

probe vehicle-based macro trajectories in the literature(41, 42). Trajectories estimated from 

these existing Intelligent Transportation System sensors have uses as well as limitations. 

Sometimes it takes a long time to identify shortcomings of such data, as happened in the case 

of the Next Generation Simulation (NGSIM) dataset collected during mid-2000s. Authors 

caution that without accurate empirical microscopic trajectories, “plausible but inaccurate 

hypotheses perpetuate in vacuum(38).” Also, video cameras which are only able to provide 

microscopic trajectories in the field of vision, have difficulty to operate efficiently under all 

lighting conditions. Light Detection and Ranging (LiDAR), an active remote sensing technology, 

has the potential to overcome these shortcomings and be able to provide accurate microscopic 

trajectories due to its nature of providing three dimensional measurements of the target 

environment(43). LiDAR is used as a key sensor to detect and track objects in autonomous 

driving (44) and paved the way forward for it being tested as an infrastructure-based traffic 

sensing device, especially from the connected vehicles (CV) perspective especially to get 

microscopic traffic states of vehicles not equipped with CV capabilities(45–47). As part of this 

effort researchers have proposed roadside LiDAR based microscopic trajectory estimation 

frameworks. Sun, Y et al. (2018) proposed a framework to extract vehicle trajectories from the 

3-D LiDAR data. Their framework consists of raw data processing; statistical outlier removal of 

noise points; RANSAC algorithm-based ground plane segmentation to eliminate the points 

corresponding to road surface; basic clustering techniques-based algorithm to cluster points of 

individual vehicles; principal component analysis (PCA) based oriented bounding box (OBB) 

estimation for the vehicles and geometry-based tracking algorithm. In this study the OBB’s front 
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right corner was used for tracking the vehicle while approaching the LiDAR sensor, and the rear 

right corner of the OBB was used while the vehicle was departing the LiDAR sensor. One of the 

key findings while evaluating this framework was that the estimated speed of the vehicle may 

suddenly drop or increase. This is attributable to the effect of using the OBB of individual partial 

scans(48).  

Other frameworks proposed mainly in the context of tracking road users like vehicles and 

pedestrians have similar steps of LiDAR raw data processing, background elimination, clustering 

of individual road users, classification of road users, tracking the road users using variants of 

Kalman Filter(45, 46, 49). All these studies track individual road users with the help of a selected 

reference point on their oriented bounding box like centroid, right corner, left corner. One 

thing in common for all these studies is using the bounding box of individual LiDAR scans, which 

results in sharp increase or decrease of the speed. 

Zhang, J et al., (2019) proposed a refined tracking process using the images of LiDAR scans. In 

this study, a maximum distance-based background filter mask gives the moving LiDAR points of 

road users. Individual road users are identified using a Euclidean distance-based clustering 

technique. A SVM binary classifier separates vehicles from non-vehicles. They proposed an 

image based two-stage tracking step to overcome the bias induced due to incompleteness of 

individual scans. In the first stage, pairwise registration of individual LiDAR scan images is 

carried-out with respect to the LiDAR image of first scan to build a reference image by 

combining all scans. In the second stage, this reference image is invert transformed back to 

each of the individual scans. The centroid of the reference image in these new positions defines 

the trajectory of the vehicle. One major limitation of this approach is that every LiDAR scan 

image should have an overlapping region with respect to the first scan image for getting an 

accurate image registration result. This would shorten the length of the estimated vehicle 

trajectory. Another limitation of this approach is the warping LiDAR images would undergo 

during horizontal curve maneuvers, which might further reduce the length of the trajectory. 

Another disadvantage is losing the rich third dimensional data of the LiDAR sensor. 

To overcome the above mentioned shortcomings, we investigated a forward – backward pass 

framework for estimating microscopic trajectories using LiDAR point clouds. The rest of the 

chapter is organized as mentioned here. The next section discusses the data collection set up at 

SR-7, Calexico in Southern California. The subsequent section discusses the detailed steps of the 

methodology framework we proposed. The last section discusses the results and future work. 

5.3 Data Collection Setup 
LiDAR data is collected on state route SR-7 (Figure 5-2) south of state route SR-98 at Calexico in 

the state of California. The data collection site has an intersection downstream of the LiDAR 

sensor, increasing the chance of observing lane change phenomena. 
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Figure 5-2. LiDAR data collection site at Calexico 

 

5.4 Methodology 
The proposed methodology consists of processing raw LiDAR data collected through three 

steps. The first step involves background elimination during which all non-vehicular points are 

removed from the captured LiDAR data. For this purpose, a threshold-based mask filter for 

spatial occupancy of points is used to eliminate the background. Once the background is 

eliminated, the DBSCAN clustering algorithm is used for identifying all individual vehicles 

present in the LDZ. Once all individual vehicle points in each successive scan are collected for 

the duration of the data collection period, it is important to group all the LiDAR scans of each 

single vehicle. A Global Nearest Neighbor (GNN) and Hungarian Algorithm based data 

association in combination with Kalman Filter based tracking is used to establish collection of all 

LiDAR scans for every single vehicle that passed through the LDZ. All these three steps are 

explained in Li, Y et al. (36).  

While a trajectory for the vehicle can be established during the third step mentioned earlier, it 

is limited in accuracy due to the following explanation. As the vehicle is passing through the 

LDZ, only its partial body gets scanned and is continuously varying in size. The scanned part of 

the vehicle’s body increases in size from the beginning until mid-portion and starts decreasing 

after this. This is illustrated in Figure 5-3 below. Also, we can note that the vehicle scans at the 

entry and exit have a very small number of points. This induces errors in the trajectory being 

obtained during the tracking stage. To overcome this, a forward-backward pass approach is 

adopted for estimating accurate trajectories of the vehicle passing through the LDZ. 
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Figure 5-3. Raw LiDAR scans of vehicle while passing through LDZ 

 

5.4.1 Identification of suitable registration pipeline for LiDAR point clouds 
Identification of a robust registration pipeline combining the available registration algorithms is 

extremely important for the trajectory estimation purposes. The earlier registration pipeline 

established by Allu, et al. (37) does not take road plane constraint into account. Another 

pipeline is established by Li, Y et al.(50) but excludes the LiDAR scans in the beginning and end 

parts of the LDZ. Hence it is necessary to determine a robust registration pipeline from the 

beginning to the end of the LDZ quantitatively. 

5.4.2 Determination of Optimal Registration Pipeline 
Identification of a robust registration pipeline with a combination of existing algorithms such 

that it works accurately across the entire LiDAR Detection Zone is very important. This ensures 

an accurate microscopic trajectory of the vehicle as well. 

To identify an accurate registration pipeline, a quantitative simulation experiment is setup as 

follows. For every ‘ith’ frame(scan) of the vehicle which acts as a source, a target point cloud is 

created by subjecting it to a known rotation of 10 degrees around the Z-axis in the road plane 

and a translation of 0.5m and 1.0m in X and Y-axis directions, respectively. A set of six 

registration pipelines are chosen based on literature review and the works carried out in (37, 

50). These pipelines are illustrated in Figure 5-4. 



Investigation of LiDAR Sensing Technology to Improve Freeway Traffic Monitoring 
 

37 
 

 

Figure 5-4. Set of Registration pipelines evaluated 

 

The proposed set of pipelines are tested to verify if it can estimate the ‘known induced’ 

rotation and translation accurately between each of these source and target pairs. The absolute 

error between induced and estimated rotations as well as translations is used to choose the 

appropriate registration pipeline for further use. The results of the experiment are shown in the 

plot presented as Figure 5-5 below.  
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Figure 5-5. Absolute Error between induced and estimated rotation, translations 

Except the registration pipeline number 1, other pipelines did not estimate the induced 

transformation accurately enough. Hence the first pipeline would be used in the further steps 

of truck reconstruction. 

5.4.3 Microscopic Trajectory Estimation 
The registration pipeline chosen in the previous section is shown in Figure 5-6. This optimal 

pairwise registration (OPR) pipeline is used to estimate the pairwise rigid body transformation 

matrices between successive scans of a vehicle. For each of these transformation matrices the 

corresponding quality metrics fitness and RMSE values are also stored.  

The fitness and RMSE values of the pairwise registration indicate its accuracy. A high fitness 

score and low RMSE values are desirable, and from the experimental setup of registration 

pipelines a fitness score above 0.98 and RMSE value less than 0.2 indicate a good pairwise 

registration. Even though the registration pipeline is chosen based upon quantitative accuracy, 

the values of these metrics does not always comply to the accuracy threshold values. This can 

be seen in Figure 5-7 below. The example showcased is a truck which has 86 lidar scans. There 

are a total of 9 discontinuities where OPR did not result in expected accuracy. A qualitative 

investigation of these breakdowns can be done using Figure 5-8. Figure 5-8 showcases partial 

reconstructions of the truck where OPR values are continuously accurate. 

1 6 2 3 4 5 
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Figure 5-6. Optimal Pairwise Registration Pipeline 
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Figure 5-7. Fitness and RMSE values of OPR for a truck 

 

Figure 5-8. Visual Investigation of OPR breakdowns 

Visual investigation of the discontinuities revealed why OPR was not doing well at those 

discontinuities. These lucid observations are presented in Table 5-1 below. 
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Table 5-1. Analysis of OPR discontinuities 

Discontinuity Explanation 

Between 1 and 2 
The front vertical surface of the trailer appears at greater detail 

compared to the scans before causing the discontinuity. 

Between 2 and 3 
The vertical surface of the trailer is not scanned as the truck is 

almost perpendicular to the LiDAR in this portion, and this 
information has been lost compared to previous scans. 

Between 3 and 4 
The rear vertical surface of the cab starts appearing in greater 
detail compared to the previous scans causing the breakdown. 

Between 4 and 5 
The rear vertical surface is completely obscured by the side vertical 
face of the trailer, and this information is missing compared to the 

previous scans. 

Between 5 and 6 
The rear vertical surface of the trailer is more pronounced in the 6th 

partial reconstruction compared to the 5th.  

Between 6 and 7 
The Cab information is completely lost in the 7th, and only half of 

the trailer is present compared to 6th. 

Between 7 and 8 
Further breakdowns happened due to the slow disappearance of 

the trailer’s side face and rear axle. 

 

To overcome this shortcoming of the OPR, adjacent partially reconstructed point clouds were 

used to obtain the transformation matrices at the discontinuities. The entire scanned body of 

the vehicle passing through the LDZ was reconstructed after all transformation matrices were 

obtained. The microscopic trajectory of the vehicle was obtained by performing sequential 

inverse rigid body transformations of the reconstructed vehicle body. The total flow of tasks 

involved in microscopic trajectory estimation are presented in Figure 5-9. An example trajectory 

of a truck passing through the LDZ is presented in Figure 5-10. A lane change captured at the 

beginning of the trajectory can also be observed. 
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Figure 5-9. Total workflow of Microscopic Trajectory Estimation 

 

Figure 5-10. An Example of Microscopic Trajectory presented at 1 second aggregation from 
reconstructed LiDAR scans 

 

5.5 Analysis and Discussion 
For preliminary analysis, the trajectory of the passing truck is estimated as the centroid of a 2D 

bounding box projected on to the road plane. Also, vehicle speed, acceleration and change in 

travel direction are estimated using the trajectory.  

a. Side View 

b. Top View 
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Figure 5-11. Few examples of Trajectories and corresponding traffic characteristics of the 
Trucks  

These plots show that detailed microscopic trajectories can be estimated with the proposed 

framework. 

Microscopic trajectories of vehicles have potential to address well known challenges such as 

calibrating and validating microscopic traffic flow models, estimating surrogate safety 

measures, and estimating microscopic emissions and energy. They also have promise to 

contribute and draw insights to better understand emerging transportation systems such as 

connected and automated vehicles and coordinated driving strategies as part of achieving 

efficient electric grid-mobility integrations, etc.   

In this chapter, we developed a forward-backward pass microscopic trajectory estimation 

framework for a LiDAR sensor that can potentially address the bias of using individual scan-

based tracking. A major contribution of this framework is development of a multistage coarse-

to-fine pairwise rigid body registration pipeline to achieve accurate transformation matrices 

throughout the LiDAR detection zone, which overcame the limitations of approaches that 

excluded LiDAR scans from the entry and exit portions of the detection zone. The proposed 

framework extended the length over which a vehicle can be tracked and in turn the length of 

microscopic trajectories.  
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